LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 11-07-2025

MCQ

(i) 10

a)

 $\overline{\text{If } z} = 3 + i \text{, then } |z| =$

(ii) 20

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SIXTH SEMESTER - JULY 2025

Max.: 100 Marks

UMT 6501 - COMPLEX ANALYSIS

Dept. No.

Tiı	me: 10:00 AM - 01:00 PM							
SECTION A - K1 (CO1)								
	Answer ALL the Questions - $(10 \times 1 = 1)$	10)						
1.	Answer the following							
a)	Find the real and imaginary parts of $\frac{4}{6-7i}$							
b)								
c)	Check whether $u = 5x^4 - 5y^4$ is harmonic or not							
d)	Find the isolated singular points of the function $\frac{z+1}{z^3(z^2+1)}$							
e)	Define residue of a function at a point							
2.	Fill in the blanks							
a)	$A\operatorname{rg}(-i) =$							
b)	If $f'(z) = 0$ in a domain D, then $f(z)$ must be athroughout D.							
c)	Any polynomial of degree $n(n \ge 1)$ has at least one							
d)	The residue of $\frac{z^3 + 2z}{(z-i)^3}$ at $z = i$ is							
e)	The transformation $w = \overline{z}$ is isogonal but not							
	SECTION A - K2 (CO1)							
	Answer ALL the Questions $(10 \times 1 = 1)$	10)						
3.	True or False							
a)	$\lim_{z \to -1} \frac{iz+3}{z+1} = 0$							
b)	Laplace equation is $H_{xx}(x,y) + H_{yy}(x,y) = 1$.							
c)	The sequence $z_n = \frac{1}{n^3} + i(n = 1, 2, 3,)$ converges to i							
d)	To evaluate integrals of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta)d\theta$ Cauchy residue theorem may be used							
e)	The transformation $w = \frac{az+b}{cz+d}(ad-bc \neq 0)$ where a,b,c,d are complex constants is called line	ear						
	fractional transformation							
1	Answer the following							

(iii) 14

(iv) 12

	T								
b)	$\int_0^1 (1+it)^2 dt =$								
	(i) 2	(ii)3	(iii) $\frac{2}{3} + i$	(iv) $\frac{2}{3}$	-i				
c)	If a series of con	nplex numbers conve	erges, the nth term	converges to	as n tends to	o infinity.			
	(i) 1	(ii) 0	_	(iii) 2	(iv) 3	-			
d)	The critical poin	ats of $z + \frac{1}{z}$ are							
	(i) 11,	(ii) 1,0	(iii)1,1	(iv)1	1,2				
e)	A singular point	of the function $\frac{1}{z(z-z)}$	$\frac{1}{-i}$ is						
	(i) 0	(ii) 1	(iii) 2	(iv	7)3				
		S	SECTION B - K3	(CO2)	,				
Answer any TWO of the following $(2 \times 10 = 20)$									
5.		es of cubic root of -1				(' ' ')			
6.	Verify Cauchy – Riemann equations for $f(z) = \sin z$								
7.	1								
	Find the Laurent's series for $e^{\frac{z}{z}}$ about $z = 0$								
8.	Discuss any 4 transformations of $w = \frac{1}{z}$								
SECTION C – K4 (CO3)									
Ans	wer any TWO of	f the following				$(2 \times 10 = 20)$			
9.	Derive Cauchy Riemann equations in polar coordinates for a differentiable function								
10.	If a function $f(z) = u + iv$ is an advise in a domain D, Establish that its component functions are harmonic								
	in D.								
11.	State and prove Cauchy's residue theorem and hence evaluate $\int_C \frac{5z-2}{z(z-1)} dz$ where C is the circle $ z =2$.								
12.									
SECTION D – K5 (CO4)									
Ans	wer any ONE of	the following				$(1 \times 20 = 20)$			
13.	Prove that if $f($	(z) = u + iv is different	ntiable at a point z_0	$a_0 = x_0 + iy_0$ then i	u and v have f	irst order partial			
	Prove that if $f(z) = u + iv$ is differentiable at a point $z_0 = x_0 + iy_0$ then u and v have first order partial derivatives at (x_0, y_0) and these partial derivatives satisfy the Cauchy Riemann equations.								
14.	State and prove Taylor's Theorem and obtain the Taylor's series expansion of $\frac{1}{1-z}$								
		S	SECTION E – K6	(CO5)					
Ans	wer any ONE of	the following				$(1 \times 20 = 20)$			
15.	Derive Cauchy integral formula and hence evaluate $\int_C \frac{z}{(9-z^2)} dz$ where C is the circle $ z =3$								
16.	Evaluate $\int_0^{2\pi} \frac{d}{5+4\pi}$								